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10.1 INTRODUCTION
10.1.1 General

Flow routing is a mathematical procedure for predicting the changing magnitude,
speed, and shape of a flood wave as a function of time (i.e., the flow hydrograph)
at one or more points along a watercourse (waterway or channel). The watercourse
may be a river, stream, reservoir, estuary, canal, drainage ditch, or storm sewer.
The flow hydrograph (unsteady flow) can result from precipitation runoff (rainfall
and/or snowmelt), reservoir releases (spillway, gate, and turbine releases and/or
dam failures), landslides into reservoirs, or tides (astronomical and/or wind-
generated storm surges).

Many ways have been sought to predict the characteristic features of a flood wave
in order to determine necessary actions for protecting 1ife and property from the
effects of flooding, and to improve the transport of water through natural or man-
made watercourses for economic reasons. Commencing with investigations as early
as the 17™ century, mathematical techniques for flow routing have continually
evolved over time. In 1871, Barré de Saint-Venant (116) formulated the basic
theory for one-dimensional analysis of unsteady flow; however, due to the
mathematical complexity of the Saint-Venant equations, simplifications were
necessary to obtain feasible solutions for the important characteristics of a
flood wave and its movement. This resulted in the gradual development of many
simplified flow routing methods. Only within the last four decades could the
complete Saint-Venant equations be solved via computers with varying degrees of
feasibility.

Flow routing may be classified as either lumped or distributed. In Tumped flow
routing or hydrologic routing, the flow is computed as a function of time at one
location along the watercourse; however, in distributed flow routing or hydraulic
routing, the flow is computed as a function of time simultaneously at several
cross sections along the watercourse (see Fig. 10.1.1). Two methods for lumped
flow routing and two for distributed flow routing are presented herein along with
their data requirements. Chapter 10 concludes with several complexities which can
be encountered in channel flow routing.

10.1.2 Routing Model Selection

Flow routing has been an important type of hydrologic analysis, and its inherent
complexity and computational requirements have resulted in the development of many
routing models. The literature abounds with a wide spectrum of useable flow
routing models (44,88,94,95), which are sufficiently accurate when used within the
bounds of their limitations. Selection of a flow routing model for a particular
application is influenced by the relative importance placed on the following
factors: (a) the model provides appropriate hydraulic information to answer the

1



user's questions; (b) the model's accuracy; (c) the accuracy required in the flow
routing application; (d) the type and availability of required data; (e) available
computational facilities and costs; (f) familiarity with a given model; (g) extent
of documentation, range of applicability, and availability of a "canned" or
packaged routing model; (h) complexity of the mathematical formulation if the
routing model is to be totally developed from "scratch" (coded for computer); and
(i) capability and time available to develop a particular type of routing model.
Taking the above factors into consideration and recognizing that the relative
importance of each may change depending on the application, it is apparent there
is no universally superior flow routing model; and a judicious selection of a
model from among the several available models is necessary. The simplified
routing models are appealing due to their computational simplicity; however,
accuracy considerations can restrict their range of applicability.

Accuracy of Reservoir Routing Models. In reservoir applications, the accuracy
of Tevel-pool routing models (see Section 10.2.2) relative to the more accurate
distributed dynamic routing models (see Section 10.3.3) is shown in Fig. 10.1.2,
an extension of the author's previous work on this subject (50). The error (in
percent) associated with lTevel-pool routing is expressed as a normalized error for
the rising limb of the outflow hydrograph. The peak outflow is used as the

normalizing parameter. The normalized error (Eq) is:

Y (QLi —Q[,i)2 (10.1.1)

in which Q  is the level-pool routed flow; Q, is the dynamic routed flo Q,
1

D; p
is the dynamic routed flow peak, and N' is the number of computed discharges
comprising the rising 1imb of the routed hydrograph. Since level-pool routing is
based on the assumption of a horizontal water surface along the length of the
reservoir at all times, the error (E) associated with level-pool routing
increases as (a) reservoir mean depth (Br) decreases, (b) reservoir length (L)
increases, (c) time of rise (T.) of inflow hydrograph decreases, and (d) inflow
hydrograph volume decreases. These effects can be represented by three

dimensionless parameters, i.e., g, = 0./L., o, = L./(3600 T_ /g D_) in which g is

the gravity acceleration constant and T_is the time (hrs) from beginning of rise
until the peak of the hydrograph, and o, = hydrograph volume/reservoir volume.
As shown in Fig. 10.1.2, E.  increases as o, increases and as o, and o, decrease;
also the influence of o, increases as o, decreases.

Accuracy of River Routing Models. In river routing applications, the lumped
as well as the kinematic-type and diffusion-type routing models offer the
advantage of simplicity where there is an absence of significant backwater
effects. Accuracy considerations restrict these models to applications where the
depth-discharge relation is essentially single-valued, and the product of the time
of rise of the hydrograph and the channel bottom slope is not small. An
approximate criterion (42,107) which restricts kinematic-type routing relative to
dynamic routing models errors to less than E (percent) is:
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E < /J'/ @ n1.2 qpo.Z/(TrSc)Lé) (1012)

The error term (E), expressed in percent, represents the energy slope ratio of
kinematic models to dynamic models. A similar criterion (E') for the diffusion-
type routing models is:

£ < “// ¢/ qpo.a/(TrS°0.7 nO.é) (10.1.3)

where:
¢ = (m+1)2/(3m+5) (10.1.4)
@' = (m+3)/(3m+5) (10.1.5)

in which the units conversion factors (u') is 0.21 (US units) or 0.43 (SI units)
and (u") is 0.0022 (US units) or 0.0091 (SI units), T_is the time of rise (hrs)
of the inflow hydrograph, S  is the channel bottom sfbpe (ft/ft), q, is a unit-
width peak discharge (cfs or m’/s), n is the Manning coefficient for flow
resistance, and m is the cross-section shape factor, 0 < m < 2, used to describe
the channel topwidth B, as B = ky™ in which y is depth of flow (m= 0 for
rectangular, m = 0.5 for parabolic, and m = 1.0 for triangular channels).

An inspection of (10.1.2) and (10.1.3) shows the importance of the parameters, T,
and S , which can have a large range of possible values. The parameter q_ is not
dominant due to the power associated with it, and n has a rather restricted range
of possible values, say 0.015 to 0.25. It is also apparent that diffusion models
are applicable for a wider range of bottom slopes and hydrographs than the
kinematic models. The simple diffusion-type Muskingum-Cunge method (see Section
10.3.2) can be used effectively in many applications where (10.1.3) is satisfied
and backwater effects or reverse flows can be neglected.

In cases involving a gently sloping channel and rapidly rising flood wave, when
the combination of S and T_ becomes small enough that (10.1.3) cannot be
satisfied, dynamic routing models (see Section 10.3.3) based on the complete one-
dimensional Saint-Venant equations are required. Dynamic routing models are
required for (a) slowly rising flood waves in mild sloping channels i.e., slopes
less than about 0.10 percent; (b) situations where backwater effects are important
due to tides, significant tributary inflows, natural constrictions, dams, and/or
bridges; and (c) situations where waves propagate upstream from large tides and
storm surges or very large tributary inflows. As the trend for increased computer
computational speed and storage capabilities at decreased costs continues, the
economic feasibility of using dynamic routing models for a wider range of
applications will increase, since dynamic models have the capability to correctly
simulate the widest spectrum of wave types and waterway characteristics. Implicit
dynamic routing models -- the most efficient and versatile although the most
complex of the dynamic routing models -- will be increasingly utilized as
improvements continue to be made in their computational robustness and
reliability.



10.2 LUMPED FLOW ROUTING
10.2.1 General

A simplified description of unsteady flow along a watercourse (routing reach)
depicts it as a lumped process, as shown in Fig. 10.1.1, in which the inflow (I)
at the upstream end and the outflow (Q) at the end of the watercourse are
functions of time, i.e., I(t) and Q(t). The principle of mass conservation
requires the difference between the two flows (discharges) to be equal to the time
rate of change of the storage (S) within the reach, i.e,

I(t) -Q(t) =dS/dt (10.2.1)

The storage (S) is related to I and/or Q by an arbitrary empirical storage
function. The most simple is a single-valued function of outflow (Q), i.e.,
S = f(Q), or of water-surface elevation (h), i.e., S = f(h). This implies the
water surface is level throughout the watercourse, usually a reservoir or lake.
A more complex relationship exists for long narrow reservoirs or open channels
(rivers and streams) where storage is a function of both inflow and outflow.

Solution of (10.2.1) for Q(t) with various approximations for the storage con-
stitutes lumped flow routing. Both graphical and mathematical techniques for
solving (10.2.1) have been used. The attractiveness of lumped flow routing is its
relative simplicity compared to distributed flow routing. However, lumped flow
routing methods for rivers neglect backwater effects and are not accurate for
rapidly rising hydrographs routed through mild to flat sloping rivers, and they
are also inaccurate for rapidly rising hydrographs in long reservoirs. Lumped
flow routing methods (several are listed in Table 10.2.1) can be categorized as:
(a) level-pool types which are used for reservoirs, assuming a level water surface
at all times, and based on (10.2.1); (b) storage types used for rivers, consider-
ing the sloping water surface due to the passage of a flood wave, and are based
on (10.2.1); and (c) linear systems types which assume the routing channel is
composed of linear reservoirs connected by linear channels which may be uniquely
characterized by a unit response function, and the inflow (input)-outflow (output)
relationship is defined by a convolution integral.

10.2.2 Level-Pool Reservoir Routing

In this technique, the reservoir is assumed always to have a horizontal water
surface throughout its length; hence, level-pool. Unsteady flow routing in
reservoirs which are not excessively long and in which the inflow hydrograph is
not rapidly changing with time, as determined from Fig. 10.1.2, can be
approximated by a simple technique known as level-pool routing. The water-surface
elevation (h) changes with time (t), and the outflow from the reservoir is assumed
to be a function of h(t). This is the case for reservoirs with uncontrolled
overflow spillways such as the ogee-crested, broad-crested weir, and morning-glory
types (17,18,19,91). Gate controlled spillways can be included in level-pool
routing if the gate setting (height of the gate bottom above the gate sill) is a
predetermined function of time, since the outflow is a function of h and the
extent of gate opening. Several level-pool routing techniques have been proposed,
many of them graphical or semigraphical; however, with computerization,
nongraphical computational techniques are currently more prevalent. Since



(10.2.1) is an ordinary differential equation, it can be solved by various
numerical techniques such as a Runge-Kutta method (19) or an iterative trapezoidal
integration method (40,45) which is presented herein.

[terative Trapezoidal Integration Method. In this solution method, the
trapezoidal rule is used to integrate the conservation of mass equation (10.2.1).
The time domain consists of time lines separated by At intervals, i.e., t=0, At,
2At, ...., jAt, (j+1)At. The time rate of change in storage is the product of
reservoir surface area (Sa) and change of water-surface elevation (h) over the j™
time step, i.e.,

dS/dt = 0.5(Sal + Sai*!) (hi*' - hi)/At] (10.2.2)

in which the surface area (Sa) is specified as a known tabular function of h.
Using average values for I(t) and Q(t) over the At interval and substituting
(10.2.2) into (10.2.1) yields the following:

0.5(11+1*") - 0.5(Qi+Qi*") - 0.5(Sal«Sai*) (hi*'-hi)/Ati =0  (10.2.3)

The inflows (I) at times j and j+1 are known from the specified inflow hydrograph,
the outflow (Q) at time j can be computed from the known water-surface elevation
(h!) and an appropriate spillway discharge equation. The surface area (Sa') can
be determined from the known value of h’. The unknowns in the equation consist
of hi*', @/*', sal*'; the latter two are known nonlinear functions of h'*'. Hence,
(10.2.3) can be solved for hi*! by an iterative method such as Newton-Raphson,
i.e.,

hisy = h = £(hy")/ ¢ (hi7) (10.2.4)

in which k is the iteration counter; and f(hi”) is the left-hand side of (10.2.3)
evaluated with the first estimate for hi”, which for k=1 is either h! or a linear

extrapolated estimate of hi*'; f’ﬂd‘v is the derivative of (10.2.3) with respect
to hi*'. It can be approximated by using a numerical derivative as follows:

(n") =[f(h;’*‘+e) - f(hi*‘-e)]/[(hi"+s) - (h"'~¢)| in which € is a small value, say
0.1 ft (0.03 m). Using (10.2.4), only one or two iterations are usually required
to solve (10.2.3) for hi*'. Initially, the pool elevation (h') must be known to
start the computational process. Once h'*' is obtained, Q*' can be computed from
the spillway discharge equation.

Limitations. As shown in Fig. 10.1.2, level-pool routing is less accurate as
reservoir length increases, reservoir mean depth decreases, and time of rise of
the inflow hydrograph decreases. This inaccuracy can have significant economic
effects on water control management (21,118).



10.2.3 Muskingum River Routing

The Muskingum method, developed by McCarthy (92), is a popular Tumped flow routing
technique in the United States and elsewhere. It assumes a variable
discharge/storage equation, i.e.,

S=K[XI+(1-X) Q] (10.2.5)

Assuming the stage is a single-valued function of discharge (Q), the storage (S)
in the routing reach is represented by (10.2.5) in which the prism storage in the
reach is KQ where K is a proportionality coefficient; and, the volume of wedge
storage is equal to KX (I-Q), where X is a weighting factor having the range
0 < X <0.5 (most streams have X values between 0.1 and 0.3). The storage beneath
a line parallel to the stream bed is called prism storage; the water located
between this line and the actual profile is wedge storage. In a channel, the
storage relationship to discharge plots as a single or twisted loop if the storage
is assumed to be related only to outflow, i.e., storage is greater for a given
outflow during rising stages than during falling stages. This is caused by
different backwater profiles existing at various times during passage of the flood
wave.

The time rate of change of storage dS/dt in (10.2.1) is represented as follows:

ds/dt = (Sj”—Sj)/Atj = [[X 1" +(1-X) Qi*1] - [X Ii+(1-X) Qi] ]/Atj (10.2.6

where the superscripts j and j+1 denote the times separated by the interval (ath).
Substituting (10.2.6) into (10.2.1) yields the following:

v o ) )
Qi*t =c, I+, Io+cQ (10.2.7)

which is the Muskingum flow routing equation, where:

C, = (At - 2KX) /[2K(1-X) + At] (10.2.8)
C, = (At + 2KX) /[2K(1-X) + At] (10.2.9)
¢, = [2K(1X) - At]/[2K(1-X) + At] (10.2.10)

and where C, + C, + (5 = 1, and K/3 < At < K is usually the range for At.

Calibration of K and X. Values for K and X can be determined from observed
inflow and outflow hydrographs (18,19,91,92,96,122). Using (10.2.6) and the
left side of (10.2.1), as expressed in (10.2.3), yields an equation for K, i.e.,

K=0.5 At[li”+1i-(Qi+‘+Qi)]/[x(Ii+‘-11’) + (1-X)(QJ+1_QJ)] (10.2.1:

If at each time interval, values of the numerator are plotted against those of the
denominator, a loop is formed. Iteratively varying X will tend to close the Toop,



and that value of X which causes the plot to be most nearly a single line is the
correct value for the reach. Then K may be computed from the average value
determined from (10.2.11) for the correct value of X. Lateral inflows can alsc
be included in the calibration of the Muskingum method (104). If observed inflov
and outflow hydrographs are not available to compute K and X, these parameters ma)
be estimated from the hydrograph and river cross-sectional and flow resistance
characteristics as shown by Cunge (23) and others (19,32,44,77,94). This
technique, known as the Muskingum-Cunge method, is best utilized as a distributec
routing method and is presented in Section 10.3.2.

Limitations. The Muskingum method sometimes produces unrealistic initial
negative dips in the computed hydrograph (23,99); however it provides reasonably
accurate results for moderate to slow rising floods propagating through mild tc
steep sloping watercourses. The Muskingum method is a kinematic-type routing
model; it's relative accuracy is approximately defined by (10.1.2). It is not
suitable for rapidly rising hydrographs such as dam-break floods, and it neglects
variable backwater effects due to downstream constrictions, bridges, dams, large
tributary inflows, or tidal fluctuations. An index to indicate insignificant
backwater effects is: the maximum volume that exceeds the peak normal depth and
s stored in backwater pools throughout the routing reach should be insignificant
compared to the volume of the rising Timb of the inflow hydrograph.

10.3 DISTRIBUTED FLOW ROUTING
10.3.1 General

Unsteady flow in a watercourse is most accurately described as a distributed
process because the flow rate, velocity, and depth (elevation) vary in space (at
cross sections along the channel) as shown in Fig. 10.1.1. Estimates of these
properties in a channel system can be obtained by using distributed flow routing
based on the complete differential equations of one-dimensional unsteady flow (the
Saint-Venant equations) (116). These equations allow the flow rate and water
level to be computed as functions of space and time rather than time alone as in
the lumped flow routing methods of Section 10.2. Distributed flow routing based
on the complete Saint-Venant equations is known as dynamic routing. Also,
simplified forms of the Saint-Venant equations, referred to as kinematic and
diffusion (zero-inertia) equations, can be used for distributed flow routing.

Saint-Venant Equations. The original Saint-Venant equations are the mass
conservation equation, i.e.,

9(AV)/ox + dA/ot -q =0 (10.3.1)

and the momentum equation, i.e.,
av/at + Vav/dx + g(oh/ax + Sf) =0 (10.3.2)

in which t is time, x is distance along the longitudinal axis of the watercourse,
A is cross-sectional area, V is velocity, q is Tlateral inflow or outflow
distributed along the x-axis of the watercourse (this term was not included in the
original derivation), g is the gravity acceleration constant, h is the water-
surface elevation above an arbitrary datum such that dh/dx = dy/ox - S, in which
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y is the flow depth and S, is the bottom slope of the watercourse, and S, is the
friction slope which may be evaluated using a uniform, steady-flow empirical
resistance equation such as Chezy's or Manning's (17,18,19,61,91,96). Equations
(10.3.1) and (10.3.2) are quasi-linear, hyperbolic partial differential equations
with two dependent parameters (V and h) varying in one dimension only (the x-
direction) and two independent parameters (x and t). The area (A) and S, are
known functions of h and/or V. No analytical solutions of the complete equa%ions
for most practical applications are available. Derivations of the Saint-Venant
equations (61,87,127,129,139) utilize the following basic assumptions: (a) the
flow is essentially one-dimensional, (b) the stream length affected by the flood
wave is many times greater than the flow depth, (c) the vertical accelerations are
negligible and vertical pressure distribution in the wave is hydrostatic, (d) the
water density is constant, (e) the channel bed and banks are fixed and not mobile,
and (f) the channel bottom slope (S)) is relatively small, less than about 15
percent.

Application of Distributed Flow Routing. Distributed flow routing models,
which compute both the rate of flow (Q) and water-surface elevation (h), are
useful for determining floodplain depths, required heights of structures such as
bridges or levees, and streamflow velocities affecting the transporting of
pollutants. Distributed flow routing models can also be used for such
applications as real-time forecasting of river floods, irrigation water deliveries
through canals, inundation maps for dam-break contingency planning, transient
waves created in reservoirs by gate or turbine changes, landslide-produced waves
in reservoirs, and unsteady flow in storm sewer systems. The true flow process
in each of these applications varies in all three space dimensions, e.g., velocity
varies along a channel, across the channel, and from the water surface to the
channel bottom. However, normally the spatial variation in the velocity across
the channel and as a function of depth is negligible, so that the entire flow
process can be approximated as varying in only one space dimension -- the
x-direction along the flow channel. Thus, the one-dimensional equations of
unsteady flow are widely applicable.

Simplified Distributed Routing Models. Prior to the advent of computers, or
more recently the feasible economical availability of such computational
resources, the inability to obtain any solutions at all to the complete Saint-
Venant equations resulted in the development of several simplified distributed
routing models. They are based on the mass conservation equation (10.3.1) and
various simplifications of the momentum equation (10.3.2).

Kinematic wave model. The most simple type of distributed routing model is
the kinematic wave model, interest in which was stimulated by the work of
Lighthill and Whitham (90). It is based on the following simplified form of the
momentum equation:

S, -S =0 (10.3.3)

in which S is the bottom slope of the channel (watercourse) and a component of
the term (3h/dx). This assumes that the momentum of the unsteady flow is the same
as that of steady, uniform flow described by the Chezy, Manning equation or a
similar expression in which discharge is a single-valued function of depth, i.e.,
6A/3Q = dA/dQ = 1/c. Also, since dA/dt = 6A/dQ « dQ/dt and Q = AV, (10.3.1) can



be expanded into the classical kinematic wave equation, i.e.,

i (10.3.4)
ot ox

in which the kinematic wave velocity or celerity (c) is defined as:
c =k'v (10.3.5)

where k' is the kinematic ratio, i.e., the kinematic wave celerity divided by the
flow velocity (V). If the Manning equation is used for the steady uniform flow,
the kinematic ratio is given by the following expression:

k =1/V dQ/dA =5/3 - 2/3 A/(BP) dP/dy (10.3.6)

in which B is the wetted top width, A the wetted area, P the perimeter of the
wetted portion of the cross section, and dP/dy is the derivative of P with respect
to the water depth (y). For flow in a wide, rectangular channel, k' = 5/3.
Solution methods for the kinematic wave equation (10.3.4) can consist of an
analytical solution using the method of characteristics (19,90,127) or direct
solution by finite-difference approximation techniques of eijther explicit or
implicit types (19,28,59,65,86,91,124). The kinematic wave equation does not
theoretically account for hydrograph (wave) attenuation. It is only through the
numerical error associated with the finite-difference solution that attenuation
is_achieved. Kinematic wave models are limited to applications where single-
value, stage-discharge ratings exist -- where there are no loop-ratings --and
where backwater effects are insignificant. Since, in kinematic wave models, flow
disturbances can propagate only in the downstream direction, reverse (negative)
flows cannot be predicted. Kinematic wave models are appropriately used as
components of hydrologic watershed models (28,59) for overland flow routing of
runoff; they are not recommended for channel routing unless the hydrograph is very
slow rising, the channel slope is moderate to steep, and hydrograph attenuation
is quite small. See Section 10.1.2 for the kinematic wave model's relative
accuracy properties.

Diffusion wave model. Another simplified distributed routing model, known
as the diffusion wave (zero-inertia) model, is based on (10.3.1) along with an
approximation of the momentum equation that retains only the last two terms in
(10.3.2), i.e.,

dh/ax + S, =0 (10.3.7)

Finite-difference approximation techniques, both explicit (58) and implicit (131),
have been used to obtain simultaneous solutions to (10.3.1) and (10.3.7). This
type of simplified routing model considers backwater effects but improperly
distributes them instantaneously (in time) throughout the total routing reach; its
accuracy is also deficient for very fast rising hydrographs, such as those
resulting from dam failures, hurricane storm surges, or rapid reservoir releases,
which propagate through mild to flat sloping watercourses. See Section 10.1.2 for
the diffusion model's relative accuracy properties. Several types of distributed



flow routing models (dynamic, diffusion, and kinematic) are listed in Table
10.3.1.

10.3.2 Muskingum-Cunge Method

The Muskingum method can be modified by computing the routing coefficients in a
particular way as shown by Cunge (23) and others (32,77,94) which changes the
kinematic-based Muskingum method to one based on the diffusion analogy which is
capable of predicting hydrograph attenuation. This modified Muskingum method
(known as the Muskingum-Cunge method) is most effectively used as a distributed
flow routing technique (19,44,77,94,101,108,112). The recursive equation
applicable to each Ax; subreach for each At' time step is:

Qi =c, Q"+, Ql + ¢yl G, (10.3.8

which is similar to the Muskingum method (10.2.7), but expanded to include lateral

inflow effects, C,. Qi" is the same as %+1in (10.2.7) while Qg and Qiﬂ are the

same as 1. and Q., respectively. The coefficients C,, C,, and C; are positive
values whose sum must equal unity; they are defined as in (10.2.8-10.2.10). The
last term (C,) in (10.3.8) accounts for the effect of time (At) and space (Ax)

averaged lateral inflow (Gi), i.e.,
C, = q; Ax At/[2K(1-X) + At] (10.3.9

in which K is a storage constant having dimensions of time, and X is a weightin
factor expressing the relative importance inflow and outflow have on the storage
It can be shown (23,94) that (10.3.8) is a finite-difference representation of th
classical kinematic wave equation (10.3.4); however, if X is expressed as
particular function of the flow properties, (10.3.8) can be considered a
approximate solution of a combination of (10.2.1) and (10.3.7) known as th
parabolic, diffusion analogy equation which accounts for wave attenuation but no
for reverse (negative) flows or backwater effects. It's relative accuracy i
approximately defined by (10.1.3). In the Muskingum-Cunge method, K and X ar
computed as follows:

K = Ax/c (10.3.10
S0.5[1-WEBS, &) =0.5[1 -0/ (K' 5, ax)] (10.3.11

in which © is the kinematic wave celerity (10.3.5), Q is discharge, B is cros:
sectional topwidth associated with Q, S, is the energy slope approximated t
evaluating S, in (10.3.2) for the initial flow condition, D is the hydraulic dept

(A/B), and K’ is the kinematic wave ratio (10.3.6). The bar (-) indicates tt
variable is averaged over the Ax reach and over the At time step. For minim:
numerical errors associated with the solution scheme, the time step (At) ar
distance step (Ax) should be selected as follows (73):
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At < T /M (10.3.12)

where M > 5, T_is the time of rise of the hydrograph, and

Ax = 0.5 ¢ At [1 +(1 +1.5 g/(c? soAt))”?-] (10.3.13)

in which q is the average unit-width discharge (Q/B) and S, the bottom slope.

Solution Procedure. With coefficients defined by (10.2.8)-(10.2.10) and
(10.3.9)-(10.3.11), the solution of (10.3.8) can be obtained by either linear or
nonlinear (iterative) methods (101,108,112). The coefficients are functions of
Ax and At (the independent parameters) and D, c, and k' (the dependent variables)
are also functions of water-surface elevations (h). These may be obtained from
a steady, uniform flow formula such as the Manning equation (17,18,19,61,91,96),
i.e.,

Q =pu/n AR#3 S 172 (10.3.14)

in which n is the Manning roughness coefficient, A is the cross-sectional area,
R is the hydraulic radius given by A/P in which P is the wetted perimeter of the
cross section, S, is the energy slope computed via a backwater equation (see
Initial Conditions in Section 10.3.3) for only the initial flow to properly
approximate S, for channels with irregular and even adverse bottom slopes, and U

is a units conversion (17) factor (1.49 for US and 1.0 for SI).

In the linear solution procedure, the coefficients K and X are assumed constant
for all time steps in each reach, or they are computed from the known flow
properties, i.e., Q(i,j), Q(i,3+1), Q(i+1,3), h(i,j), h(i,j+1), and h(i+1,j). In
the more accurate nonlinear solution, an estimated value of the unknown flow

(ij) and its corresponding h value is also used to compute K and X. The esti-
mated values are determined by extrapolation from previously computed values. The
solution procedure is iterative and converges when computed and estimated values

of h agree within a suitably small tolerance, say 0.01 ft (0.003 m).

Limitations. The nonlinear Muskingum-Cunge routing method is limited to
hydrographs that are not fast rising such as those produced by dam failures
(errors exceed 5 percent when T_ > 0.002/S.""); also, backwater effects and
reverse flows are not accounted for in this method.

10.3.3 Dynamic Routing

General. If the complete Saint-Venant equations (10.3.1) and (10.3.2) are
used, the routing model is known as a dynamic routing model. With the advent of
high-speed computers, Stoker (126,127) first attempted in 1953 to use the complete
Saint-Venant equations for routing Ohio River floods (69). Since then, much
effort has been expended on the development of dynamic routing models. Many
models have been reported in the Titerature (44,88,95), some of which are listed
in Table 10.3.1.

11



Classification of dynamic routing methods. Dynamic routing models can be
categorized as characteristic and direct methods of solving the Saint-Venant
equations. In the characteristic methods, these equations are first transformed
into an equivalent set of four ordinary differential equations which are then
approximated with finite differences to obtain solutions. Characteristic methods
(1,6,10,61,83,88,128) have not proven advantageous over the direct methods for
practical flow routing applications.

Direct methods can be classified further as either explicit or implicit. Explicit
schemes (9,33,54,69,71,88,89,126,130,139) transform the differential equations
into a set of algebraic equations which are solved sequentially for the unknown
flow properties at each cross section at a given time. However, implicit schemes
(4,7,10,11,19,25,26,33,35,37,38,40,41,44,45,49,63,72,75,80,88,91,109,114,119,
120,130,137,138) transform the Saint-Venant equations into a set of algebraic
equations which must be solved simultaneously for all Ax computational reaches at
a given time; this set of simultaneous equations may be either linear or
nonlinear, the latter requiring an iterative solution procedure.

Numerical stability of solution. Explicit methods, although simpler in
application, are restricted by numerical stability considerations. Stability
problems arise when inevitable errors in computational round-off and those
introduced 1in approximating the partial differential equations via finite
differences accumulate to the point that they destroy the usefulness and integrity
of the solution, if not the total breakdown of the computations, by creating
artificial oscillations of length about 2Ax in the solution. Due to stability
requirements, explicit methods require very small computational time steps on the
order of a few seconds or minutes depending on the ratio of the computational
reach length (Ax) to the minimum dynamic wave celerity (u), i.e., At < Ax/u. This
is known as the Courant condition, and it restricts the time step to less than
that required for an infinitesimal disturbance to travel the Ax distance. Such
small time steps cause explicit methods to be very inefficient in the use of
computer time.

Implicit finite-difference techniques, however, have no restrictions on the size
of the time step due to mathematical stability; however, numerical convergence
(accuracy) considerations require some limitation in time step size. Impiicit
techniques are generally preferred over explicit because of their computational
efficiency. Rather than using finite-difference approximation techniques to solve
the Saint-Venant equations, finite element techniques (22,29,56) can be used;
however, their greater complexity offsets any apparent advantages when compared
to a weighted, four-point implicit finite-difference scheme (described later) for
solving the one-dimensional flow equations. Finite element techniques are often
applied to two- and three-dimensional flow computation.

Extended Saint-Venant Equations. More powerful and useful expressions of the
Saint-Venant equations are their conservation or divergent form with additional
terms to account for lateral flows (87,127,129), off-channel storage areas
(33,87,129), and sinuosity effects (29,30). The extended Saint-Venant equations
(45) consist of the mass conservation equation, i.e.,

dQ/ox +ds (A +A)/dt -q =0 (10.3.15)
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and the momentum equation, i.e.,
d(s,Q)/at + 3(BQ*/A)/ox + gA(Sh/ax +S, +S ) +L +WB =0 (10.3.16)

where h is the water-surface elevation, A is the active cross-sectional area of
flow, A, is the inactive (off-channel storage) cross-sectional area which may be
preferred omitted (25) and its effect represented by a higher frictional
resistance for that portion of the cross-section, s_ and s_ are depth-weighted
sinuosity coefficients (29,30,45) which correct for the departure of a sinuous in-
bank channel from the x-axis of the floodplain, x is the longitudinal mean flow-
path distance measured along the center of the watercourse (channel and
floodplain), t is time, q is the lateral inflow or outflow per lineal distance
along the watercourse (inflow is positive and outflow is negative), B is the
momentum coefficient for nonuniform velocity distribution within the cross section
(87,130), g is the gravity acceleration constant, S¢ is the boundary friction
slope, and S, is the expansion-contraction (large eddy loss) slope (45,114).

Friction slope. The boundary friction slope (Sf) is evaluated from
Manning's equation for uniform, steady flow, i.e.,

S, =1n?Q|Q/ (u? A% R*3) = |Q|Q/K2 (10.3.17)

in which n is the Manning coefficient of frictional resistance, R is the hydraulic
radius, p is a units conversion factor (1.49 for US units and 1.0 for SI), and K
is the channel conveyance factor. The absolute value of Q is used to correctly
account for reverse (negative) flows. The conveyance formulation is preferred
(for numerical and accuracy considerations) for composite channels (25,45) having
wide, flat overbanks or floodplains in which K. represents the sum of the
conveyance of the channel (which is corrected for sinuosity effects by dividing
by s_), and the conveyances of left and right overbank areas.

Expansion/contraction effects. The term (S_) is computed as follows:

S.. =K. A(Q/A)?/(29 Ax) (10.3.18)

ec

in which K . is the expansion/contraction coefficient (negative for contraction,
positive for expansion) which varies from -0.8 to 0.4 for an abrupt change in
section geometry to -0.3 to 0.1 for a very gradual, warped transition between
cross sections. The A represents the difference in the term (Q/A)? at two adjacent
cross sections separated by a distance Ax. If the flow direction changes from
downstream to upstream, K, can be automatically changed (45).

Routing parameters. The depth-weighted sinuosity coefficients are depth
dependent and computed from specified sinuosity factors which are > 1; they
represent the ratio of the flow-path distance along a meandering channel to the
mean flow-path distance along the floodplain.
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The momentum correction coefficient (B) for nonuniform velocity distribution is:

2 2 2
B = Ke/he = Ke JA, Ke TR, (10.3.19)
2
(Ko Koy * Ke ) /(A + A +A)

Ce

in which K_is conveyance, A is wetted area, and the subscripts ¢, c, and r denote
left f]ooaplain, channel, and right floodplain, respectively (17,45). When
floodplain properties are not separately specified and the total cross section is
treated as a composite section, B can be approximated as 1.0 < B < 1.06.

Lateral flow momentum. The term (L) in (10.3.16) is the momentum effect of
lateral flows, and has the following form (130): (a) lateral inflow, L = -qv,,
where v_ is the velocity of lateral inflow in the x-direction of the main channel
flow; (b) seepage lateral outflow, L = -0.5gqQ/A; and (c) bulk lateral outflow,
L = -qQ/A.

Wind effects. The last term (WB) in (10.3.16) represents the resistance
effect of wind on the water surface (39,87); B is the wetted topwidth of the
active flow portion of the cross section; and W, = V_ [V | c , where the wind
velocity relative to the water is V_ =V cos w - V, V 1is the velocity of the
wind, w is the acute angle the wind direction makes with the x-axis, V is the
velocity of the unsteady flow, and c, is a wind friction coefficient (33).

Mud or debris flows. Another term (S.) can be included in the momentum
equation (10.3.16) in addition to S, to account for viscous dissipation of non-
Newtonian flows such as mud or debris flows (45). This effect becomes significant
(103) only when the solids concentration of the flow is in the range of about 40
to 50 percent by volume. For concentrations of solids greater than about 50
percent, the flow behaves more as a landslide and is not governed by the Saint-
Venant equations.

Implicit Four-Point, Finite-Difference Solution Technique. The extended Saint-
Venant equations (10.3.15) and (10.3.16) constitute a system of partial
differential equations with two independent variables, x and t, and two dependent
variables, h and Q; the remaining terms are either functions of x, t, h, and/or
Q, or they are constants. The partial differential equations can be solved
numerically by approximating them with a set of finite-difference algebraic
equations; then the system of algebraic equations are solved in conformance with
prescribed initial and boundary conditions.

Of various implicit, finite-difference solution schemes that have been developed,
a weighted four-point scheme first used in 1961 by Preissmann (109) and more
recently by many others (4,7,11,15,19,25,26,35,37,38,39,40,41,44,45,49,63,72,80,
91,119,120,137,138) 1is most advantageous. It is readily used with unequal
distance steps and its stability-convergence properties are conveniently modified,
and boundary conditions are easily applied.

The space-time plane. In the weighted four-point implicit scheme, the

continuous x-t region in which solutions of h and Q are sought is represented by
a rectangular grid of discrete points as shown in Fig. 10.3.1. The x-t plane
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(solution domain) is a convenient device for visualizing relationships among the
variables. The grid points are determined by the intersection of lines drawn
parallel to the x- and t-axes. Those parallel to the t-axis represent locations
of cross sections; they have a spacing of Ax, which need not be the same between
each pair of cross-sections. Those parallel to the x-axis represent time lines;
they have a spacing of At, which also need not be the same between successive time
points. Each point in the rectangular network can be identified by a subscript
(i) which designates the x-position or cross section and a superscript (j) which
designates the particular time line.

Numerical approximations of derivatives. The time derivatives are
approximated by a forward-difference quotient at point M (in Fig. 10.3.1) centered
between the i and i+l points along the x-axis, i.e.,

/3t = (6" ol - ol -9l,4)/ (2 At)) (10.3.20)

where ¢ represents any dependent variable or functional quantity (Q, s, s, A,
A,, 4, h). Spatial derivatives are approximated at point M by a forward-differ-
ence quotient located between two adjacent time lines according to weighting
factors of 8 (the ratio At'/At shown in Fig. 10.3.1) and 1-6, i.e.,

ap/ax = 0(ol, —o1") /Ax, + (1-0) (o], - #)) / Ax. (10.3.21)
Non-derivative terms are approximated with weighting factors at the same time
level (point M) where the spatial derivatives are evaluated, i.e.,

o «0(e" +oll) /2 « (1-0) () +ol.,)/2 (10.3.22)

Stability of the implicit scheme. The weighted four-point implicit scheme

is unconditionally, linearly stable for 8 > 0.5; however, the sizes of the At and
Ax steps are limited by the accuracy of the assumed linear variations of functions
between the grid points in the x-t solution domain. Values of 6 greater than 0.5
dampen parasitic oscillations which have wave lengths of about 2Ax that can grow
enough to invalidate or destroy the solution. The 6 weighting factor causes some
loss of accuracy as it departs from 0.5, a box scheme (7,69), and approaches 1.0,
a fully implicit scheme (10). This effect becomes more pronounced as the
magnitude of the At step increases (38). Usually, a 6 weighting factor of 0.60
is used to minimize the loss of accuracy while avoiding the possibility of weak
gpseudo))instability for 8 values of 0.5 when frictional effects are minimal

2,38,88).

Algebraic routing equations. Using the finite-difference operators of
(10.3.20) - (10.3.22) to replace the derivatives and other variables in (10.3.15)
and (10.3.16), the following weighted four-point, implicit finite-difference
equations are obtained:
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_q .
-6q" + (1-9) {_;x_il - (1-9) qi +

= j+1 j+ j+ j
A ) s A s A )] - A ) (10.3.2

i+l

2Atj

(BQZ/A) 17} - (BQZ/A) !

2Atj Ax.
hj+1 'hM 1 1 1
i+1 i+ i i +1 |+ j+ +
+q A [T +s;i +s;c‘_ + L3 (WB)’ (1-8)
2/A 2/n)} hi, - hl
(BQ/ )1+1 (BQ/ )1 + g :[ i+l 1 +'S-i +SJ ]‘*‘LJ (NB) (10.3.2
AX. . i
1 1
where:
Ki = (Ai + Ai”)/Z (10.3.25
5, =02 0[O/ (2 R RY) = qfl/RE (10.3.26
T, = (Q; - Q) /2 (10.3.27
E =A/P «=A/B (10.3.28
Ei = (Bi + BhJ)/Z (10.3.29
R, = (K, K. /2 (10.3.30

The terms L and W.B are defined in (10.3.16); terms associated with the ™ time
lTine are known from initial conditions or previous time-step computations; and

in (10.3.26) is defined in (10.3.17).

Solution Procedure. The flow equations are expressed in finite-difference fornm
for all Ax reaches between the first and last (N-th) cross section (i = 1,2,...,N)
along the watercourse and then solved simultaneously for the unknowns (Q and h)
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at each cross section. In essence, the solution technique determines the unknown
quantities (Q and h at all specified cross sections along the watercourse) at
various times into the future; the solution is advanced from one time to a future
time over a finite time interval (time step) of magnitude At. Thus, applying
(10.3.23) and (10.3.24) recursively to each of the (N-1) rectangular grids in Fig.
10.3.1 between the upstream and downstream boundaries, a total of (2N-2) equations
with 2N unknowns are formulated. Then, prescribed boundary conditions for

subcritical flow (Froude number less than unity, i.e., Fr =V/,/gD < 1), one at
the upstream boundary and one at the downstream boundary, provide the two
additional and necessary equations required for the system to be determinate.
Since disturbances can propagate only in the downstream direction in supercritical
flow (Fr > 1), two upstream boundary conditions are required for the system to be
determinate. The boundary conditions are described later. Due to the
nonlinearity of (10.3.23) and (10.3.24) with respect to Q and h, an iterative,
highly efficient quadratic solution technique, such as the Newton-Raphson method
(7,19,44,45,68) is frequently used. Other solution techniques linearize (10.3.23)
and (10.3.24) via a Taylor series expansion (11,25,26,109,120) or other means
(130). Convergence of the iterative technique is attained when the difference
between successive solutions for each unknown is less than a relatively small pre-
scribed tolerance. Convergence for each unknown at all cross sections is usually
attained within about one to five iterations. A more complete description of the
solution method may be found elsewhere (7,19,25,39,44,91).

The solution of 2N x 2N simultaneous equations requires an efficient technique for
the implicit method to be feasible. One such procedure requiring 38N
computational operations (+, -, *, /) is a compact, penta-diagonal Gaussian
elimination method (36,39,44) which makes use of the banded structure of the
coefficient matrix of the system of equations. This is essentially the same as
the double sweep elimination method (2,25,33,72,88,110).

When flow is supercritical, the solution technique previously described can be
somewhat simplified. Two boundary conditions are required at the upstream
boundary (2,40) and none at the downstream boundary since flow disturbances cannot
propagate upstream in supercritical flow. The unknown h and Q at the most
upstream cross section are determined from the two boundary equations. Then,
cascading from upstream to downstream, (10.3.23) and (10.3.24) are solved for hi.,
and Q;,, at each cross section by using Newton-Raphson iteration applied to a
system of two nonlinear equations with two unknowns.

Initial Conditions. Values of water-surface elevation (h) and discharge (Q)
for each cross section must be specified initially at time t = 0 to obtain
solutions to the Saint-Venant equations. Initial conditions may be obtained from
any of the following: (a) observations at gaging stations, or interpolated values
between gaging stations for intermediate cross sections in large rivers; (b)
computed values from a previous unsteady flow solution (used in real-time flood
forecasting); and (c) computed values from a steady-flow backwater solution. The
backwater method is most commonly used, in which the steady discharge at each
cross section is determined by:

Q,, =Q. +4q, Ax, oo 1 =1,2,3,...,N-1 (10.3.31

1
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in which Q, is the assumed steady flow at the upstream boundary at time t=0,
and q; is the known average lateral inflow or outflow along each Ax reach at t=0.
The water-surface elevations (h;) are computed according to the following steady-
flow simplification of the momentum equation (10.3.24):

(Q/A),,, - (Q@®/A), = R, (h, -h +4&x S,) =0 (10.3.32

in which A, and S, are defined by (10.3.25) and (10.3.26), respectively. The
1

computations proceed in the upstream direction (i = N-1, ... 3,2,1) for sub-
critical flow (they must proceed in the downstream direction for supercritical
flow). The starting water-surface elevation (h ) can be specified or obtained
from the appropriate downstream boundary condition for the discharge (Q,) obtained
via (10.3.30). The Newton-Raphson iterative solution method (48,68) for a single
equation and/or a simple, less efficient, but more stable bi-section iterative
technique can be applied to (10.3.32) to obtain h,. The steady water-surface
profile can also be obtained from steady-flow backwater models such as HEC-2 (66),
WSP2 (125), or WSPRO (121). The initial conditions must be sufficiently accurate
to result in convergence of the Newton-Raphson solution of the Saint-Venant
finite-difference equations. Small initial errors will dampen out after several
time steps due to friction.

External Boundaries. Values for the unknowns at external boundaries (the
upstream and downstream extremeties of the routing reach) of the watercourse, must
be specified in order to obtain solutions to the Saint-Venant equations. In fact,
in most unsteady flow applications, the unsteady disturbance is introduced at one
or both of the external boundaries.

Upstream boundary. Either a specified discharge or water-surface elevation
time series (hydrograph) can be used as the upstream boundary condition. The
hydrograph should not be affected by downstream flow conditions.

Downstream boundary. Specified discharge or water-surface elevation time
series, or a tabular relation between discharge and water-surface elevatior
(single-valued rating curve) can be used as the downstream boundary condition.

Another downstream boundary condition can be a loop-rating curve based on the
Manning equation (39,40,44,45). The loop is produced by using the friction slope
(S,) rather than the channel bottom slope (S ). The friction slope exceeds the
bo{tom slope during the rising limb of the hydrograph while the reverse is true
for the recession limb. The friction slope (S,) is approximated by usinc
(10.3.16) where L and W, are assumed to be zero whiﬁe s, and B are assumed to be
unity, i.e.,

S, = ~{0i - 7' )/(on at) - [(QZ/A)i - <Q2/A)i-1]/ (10.3.3:

o 8] = (0 - )/ 8,

The loop-rating boundary equation allows the unsteady wave to pass the downstrean
boundary with minimal disturbance by the boundary itself, which is desirable wher
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the routing is terminated at an arbitrary location along the watercourse and not
at a location of actual flow control such as a dam.

The downstream boundary condition can also be a critical flow section such as the
entrance to a waterfall or a steep reach, i.e.,

Q = /g/B A2 (10.3.34)

Critical flow occurs when the bottom slope (S,) exceeds the critical slope (S )
which can be easily computed as follows:

S =4 n?/DY3 (10.3.35)

c
where 1 = 14.6 for US units and 4 = 9.8 for SI units.

When the downstream boundary is a stage/discharge relation (rating curve), the
flow at the boundary should not be otherwise affected by flow conditions further
downstream. Although there are often some minor effects due to the presence of
cross-sectional irregularities downstream of the chosen boundary location, these
usually can be neglected unless the irregularity is so pronounced as to cause
significant backwater or drawdown effects. Reservoirs or major tributaries
located below the downstream boundary which cause backwater effects at the
boundary should be avoided. When either of these situations are unavoidable, the
routing reach should be extended downstream to the dam in the case of the
reservoir or to a location downstream of where the major tributary enters.
Sometimes the routing reach may be shortened by moving the downstream boundary to
a location further upstream where backwater effects are negligible.

Internal Boundaries. Along a watercourse, there are locations such as a dam,
bridge, or waterfall (short rapids) where the flow is rapidly varied rather than
gradually varied in space. At such locations (internal boundaries), the Saint-
Venant equations are not applicable since gradually varied flow is a necessary
condition for their derivation. Empirical water elevation-discharge relations
such as weir-flow are utilized for simulati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>